Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 310
Filter
1.
Nutrients ; 16(9)2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38732572

ABSTRACT

The effects of gut microbiota on the association between carbohydrate intake during pregnancy and neonatal low birth weight (LBW) were investigated. A prospective cohort study was conducted with 257 singleton-born mother-child pairs in Taiwan, and maternal dietary intake was estimated using a questionnaire, with each macronutrient being classified as low, medium, or high. Maternal fecal samples were collected between 24 and 28 weeks of gestation, and gut microbiota composition and diversity were profiled using 16S rRNA amplicon gene sequencing. Carbohydrates were the major source of total energy (56.61%), followed by fat (27.92%) and protein (15.46%). The rate of infant LBW was 7.8%, which was positively correlated with maternal carbohydrate intake. In the pregnancy gut microbiota, Bacteroides ovatus and Dorea spp. were indirectly and directly negatively associated with fetal growth, respectively; Rosenburia faecis was directly positively associated with neonatal birth weight. Maternal hypertension during pregnancy altered the microbiota features and was associated with poor fetal growth. Microbiota-accessible carbohydrates can modify the composition and function of the pregnancy gut microbiota, thus providing a potential marker to modulate deviations from dietary patterns, particularly in women at risk of hypertension during pregnancy, to prevent neonatal LBW.


Subject(s)
Dietary Carbohydrates , Feces , Gastrointestinal Microbiome , Infant, Low Birth Weight , Humans , Female , Gastrointestinal Microbiome/drug effects , Pregnancy , Infant, Newborn , Adult , Prospective Studies , Feces/microbiology , Maternal Nutritional Physiological Phenomena , Taiwan , RNA, Ribosomal, 16S/genetics , Fetal Development
2.
Int J Mol Sci ; 25(9)2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38731818

ABSTRACT

Early life exposure lays the groundwork for the risk of developing cardiovascular-kidney-metabolic (CKM) syndrome in adulthood. Various environmental chemicals to which pregnant mothers are commonly exposed can disrupt fetal programming, leading to a wide range of CKM phenotypes. The aryl hydrocarbon receptor (AHR) has a key role as a ligand-activated transcription factor in sensing these environmental chemicals. Activating AHR through exposure to environmental chemicals has been documented for its adverse impacts on cardiovascular diseases, hypertension, diabetes, obesity, kidney disease, and non-alcoholic fatty liver disease, as evidenced by both epidemiological and animal studies. In this review, we compile current human evidence and findings from animal models that support the connection between antenatal chemical exposures and CKM programming, focusing particularly on AHR signaling. Additionally, we explore potential AHR modulators aimed at preventing CKM syndrome. As the pioneering review to present evidence advocating for the avoidance of toxic chemical exposure during pregnancy and deepening our understanding of AHR signaling, this has the potential to mitigate the global burden of CKM syndrome in the future.


Subject(s)
Cardiovascular Diseases , Prenatal Exposure Delayed Effects , Receptors, Aryl Hydrocarbon , Receptors, Aryl Hydrocarbon/metabolism , Receptors, Aryl Hydrocarbon/genetics , Humans , Pregnancy , Animals , Female , Prenatal Exposure Delayed Effects/metabolism , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/etiology , Cardiovascular Diseases/chemically induced , Kidney Diseases/chemically induced , Kidney Diseases/metabolism , Kidney Diseases/etiology , Maternal Exposure/adverse effects , Signal Transduction/drug effects , Kidney/metabolism , Kidney/drug effects , Kidney/pathology , Fetal Development/drug effects , Environmental Pollutants/toxicity , Environmental Pollutants/adverse effects , Metabolic Reprogramming
3.
Nutrients ; 16(9)2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38732510

ABSTRACT

Amino acids are essential for normal pregnancy and fetal development. Disruptions in maternal amino acid metabolism have been associated with various adult diseases later in life, a phenomenon referred to as the developmental origins of health and disease (DOHaD). In this review, we examine the recent evidence highlighting the significant impact of amino acids on fetal programming, their influence on the modulation of gut microbiota, and their repercussions on offspring outcomes, particularly in the context of cardiovascular-kidney-metabolic (CKM) syndrome. Furthermore, we delve into experimental studies that have unveiled the protective effects of therapies targeting amino acids. These interventions have demonstrated the potential to reprogram traits associated with CKM in offspring. The discussion encompasses the challenges of translating the findings from animal studies to clinical applications, emphasizing the complexity of this process. Additionally, we propose potential solutions to overcome these challenges. Ultimately, as we move forward, future research endeavors should aim to pinpoint the most effective amino-acid-targeted therapies, determining the optimal dosage and mode of administration. This exploration is essential for maximizing the reprogramming effects, ultimately contributing to the enhancement of cardiovascular-kidney-metabolic health in offspring.


Subject(s)
Amino Acids , Cardiovascular Diseases , Fetal Development , Gastrointestinal Microbiome , Kidney , Humans , Pregnancy , Female , Amino Acids/metabolism , Kidney/metabolism , Animals , Gastrointestinal Microbiome/physiology , Prenatal Exposure Delayed Effects , Kidney Diseases , Maternal Nutritional Physiological Phenomena
4.
Int J Mol Sci ; 25(6)2024 Mar 14.
Article in English | MEDLINE | ID: mdl-38542273

ABSTRACT

The identification of pathological links among metabolic disorders, kidney ailments, and cardiovascular conditions has given rise to the concept of cardiovascular-kidney-metabolic (CKM) syndrome. Emerging prenatal risk factors seem to increase the likelihood of CKM syndrome across an individual's lifespan. The renin-angiotensin system (RAS) plays a crucial role in maternal-fetal health and maintaining homeostasis in cardiovascular, metabolic, and kidney functions. This review consolidates current preclinical evidence detailing how dysregulation of the RAS during pregnancy and lactation leads to CKM characteristics in offspring, elucidating the underlying mechanisms. The multi-organ effects of RAS, influencing fetal programming and triggering CKM traits in offspring, suggest it as a promising reprogramming strategy. Additionally, we present an overview of interventions targeting the RAS to prevent CKM traits. This comprehensive review of the potential role of the RAS in the early-life programming of CKM syndrome aims to expedite the clinical translation process, ultimately enhancing outcomes in cardiovascular-kidney-metabolic health.


Subject(s)
Cardiovascular System , Hypertension , Metabolic Syndrome , Pregnancy , Female , Humans , Renin-Angiotensin System , Metabolic Syndrome/metabolism , Kidney/metabolism , Cardiovascular System/metabolism , Heart , Hypertension/metabolism
5.
Am J Kidney Dis ; 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38479460

ABSTRACT

BACKGROUND & OBJECTIVES: The potential effects of antenatal glucocorticoid exposure on the health of children are unclear. We examined the association of gestational exposure to maternal systemic glucocorticoids (SG) and the risk of developing chronic kidney disease (CKD) in childhood. STUDY DESIGN: Retrospective cohort study. SETTING & PARTICIPANTS: Newborns cared for at the largest healthcare delivery system in Taiwan between 2004 and 2018. EXPOSURE: Maternal prescriptions for SG between the last menstrual period and birth as a proxy for gestational exposure. OUTCOME: Incidence of childhood CKD, including congenital anomalies of the kidney and urinary tract (CAKUT) and other kidney diseases (non-CAKUT) over 10 years. ANALYTICAL APPROACH: Cox proportional hazards models with stabilized inverse probability of treatment weighting and robust sandwich estimator were used to estimate the average association between SG and incident CKD after adjustment for offspring characteristics (aHR). RESULTS: Among 23,363 singleton-born children, gestational SG exposure was significantly associated with a higher risk of childhood CKD (aHR, 1.69 [95% CI, 1.01-2.84]). Stratified analyses showed stronger associations between SG and childhood CKD within the strata of birth <37 weeks gestational age (aHR, 2.38 [95% CI, 1.19-4.78]), male sex (aHR, 1.89 [95% CI, 1.00-3.55]), gestational exposure in the second trimester (aHR, 6.70 [95% CI, 2.17-20.64]), and total dose >24 mg hydrocortisone equivalent (aHR, 1.91 [95% CI, 1.05-3.47). LIMITATIONS: Study was limited to the Taiwan healthcare delivery system and childhood CKD events through age 10 years. CONCLUSIONS: The findings of this study suggest that gestational exposure to systemic glucocorticoids is associated with the occurrence of kidney disease in childhood. If these findings are confirmed, they may inform clinicians who are considering prescribing SG during pregnancy.

6.
Nutrients ; 16(5)2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38474810

ABSTRACT

Metabolic syndrome (MetS) denotes a constellation of risk factors associated with the development of cardiovascular disease, with its roots potentially traced back to early life. Given the pivotal role of oxidative stress and dysbiotic gut microbiota in MetS pathogenesis, comprehending their influence on MetS programming is crucial. Targeting these mechanisms during the early stages of life presents a promising avenue for preventing MetS later in life. This article begins by examining detrimental insults during early life that impact fetal programming, ultimately contributing to MetS in adulthood. Following that, we explore the role of oxidative stress and the dysregulation of gut microbiota in the initiation of MetS programming. The review also consolidates existing evidence on how gut-microbiota-targeted interventions can thwart oxidative-stress-associated MetS programming, encompassing approaches such as probiotics, prebiotics, postbiotics, and the modulation of bacterial metabolites. While animal studies demonstrate the favorable effects of gut-microbiota-targeted therapy in mitigating MetS programming, further clinical investigations are imperative to enhance our understanding of manipulating gut microbiota and oxidative stress for the prevention of MetS.


Subject(s)
Gastrointestinal Microbiome , Metabolic Syndrome , Animals , Metabolic Syndrome/etiology , Risk Factors , Oxidative Stress , Prebiotics
7.
J Nutr Biochem ; 127: 109604, 2024 May.
Article in English | MEDLINE | ID: mdl-38373508

ABSTRACT

Recent human and animal studies have delineated hypertension can develop in the earliest stage of life. A lack or excess of particular nutrients in the maternal diet may impact the expression of genes associated with BP, leading to an increased risk of hypertension in adulthood. Modulations in gene expression could be caused by epigenetic mechanisms through aberrant DNA methylation, histone modification, and microRNAs (miRNAs). Several molecular mechanisms for the developmental programming of hypertension, including oxidative stress, dysregulated nutrient-sensing signal, aberrant renin-angiotensin system, and dysbiotic gut microbiota have been associated with epigenetic programming. Conversely, maternal nutritional interventions such as amino acids, melatonin, polyphenols, resveratrol or short chain fatty acids may work as epigenetic modifiers to trigger protective epigenetic modifications and prevent offspring hypertension. We present a current perspective of maternal malnutrition that can cause fetal programming and the potential of epigenetic mechanisms lead to offspring hypertension. We also discuss the opportunities of dietary nutrients or nutraceuticals as epigenetic modifiers to counteract those adverse programming actions for hypertension prevention. The extent to which aberrant epigenetic changes can be reprogrammed or reversed by maternal dietary interventions in order to prevent human hypertension remains to be established. Continued research is necessary to evaluate the interaction between maternal malnutrition and epigenetic programming, as well as a greater focus on nutritional interventions for hypertension prevention towards their use in clinical translation.


Subject(s)
Hypertension , Malnutrition , Prenatal Exposure Delayed Effects , Animals , Female , Humans , Hypertension/genetics , Hypertension/metabolism , Maternal Nutritional Physiological Phenomena , Fetal Development , Malnutrition/complications , Malnutrition/genetics , Epigenesis, Genetic , Prenatal Exposure Delayed Effects/prevention & control
8.
Antioxidants (Basel) ; 13(2)2024 Feb 12.
Article in English | MEDLINE | ID: mdl-38397824

ABSTRACT

Cardiovascular-kidney-metabolic (CKM) syndrome has emerged as a major global public health concern, posing a substantial threat to human health. Early-life exposure to oxidative stress may heighten vulnerability to the developmental programming of adult diseases, encompassing various aspects of CKM syndrome. Conversely, the initiation of adverse programming processes can potentially be thwarted through early-life antioxidant interventions. Melatonin, originally recognized for its antioxidant properties, is an endogenous hormone with diverse biological functions. While melatonin has demonstrated benefits in addressing disorders linked to oxidative stress, there has been comparatively less focus on investigating its reprogramming effects on CKM syndrome. This review consolidates the current knowledge on the role of oxidative stress during pregnancy and lactation in inducing CKM traits in offspring, emphasizing the underlying mechanisms. The multifaceted role of melatonin in regulating oxidative stress, mediating fetal programming, and preventing adverse outcomes in offspring positions it as a promising reprogramming strategy. Currently, there is a lack of sufficient information in humans, and the available evidence primarily originates from animal studies. This opens up new avenues for novel preventive intervention in CKM syndrome.

9.
Int J Mol Sci ; 25(3)2024 Jan 28.
Article in English | MEDLINE | ID: mdl-38338891

ABSTRACT

The growing recognition of the association between maternal chronic kidney disease (CKD) and fetal programming highlights the increased vulnerability of hypertension in offspring. Potential mechanisms involve oxidative stress, dysbiosis in gut microbiota, and activation of the renin-angiotensin system (RAS). Our prior investigation showed that the administration of adenine to pregnant rats resulted in the development of CKD, ultimately causing hypertension in their adult offspring. Citrulline, known for enhancing nitric oxide (NO) production and possessing antioxidant and antihypertensive properties, was explored for its potential to reverse high blood pressure (BP) in offspring born to CKD dams. Male rat offspring, both from normal and adenine-induced CKD models, were randomly assigned to four groups (8 animals each): (1) control, (2) CKD, (3) citrulline-treated control rats, and (4) citrulline-treated CKD rats. Citrulline supplementation successfully reversed elevated BP in male progeny born to uremic mothers. The protective effects of perinatal citrulline supplementation were linked to an enhanced NO pathway, decreased expression of renal (pro)renin receptor, and changes in gut microbiota composition. Citrulline supplementation led to a reduction in the abundance of Monoglobus and Streptococcus genera and an increase in Agothobacterium Butyriciproducens. Citrulline's ability to influence taxa associated with hypertension may be linked to its protective effects against maternal CKD-induced offspring hypertension. In conclusion, perinatal citrulline treatment increased NO availability and mitigated elevated BP in rat offspring from uremic mother rats.


Subject(s)
Autonomic Nervous System Diseases , Hypertension , Pre-Eclampsia , Prenatal Exposure Delayed Effects , Renal Insufficiency, Chronic , Pregnancy , Humans , Female , Rats , Animals , Male , Citrulline/pharmacology , Citrulline/therapeutic use , Rats, Sprague-Dawley , Hypertension/etiology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/complications , Adenine/adverse effects , Prenatal Exposure Delayed Effects/chemically induced
10.
J Nutr Biochem ; 126: 109571, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38199310

ABSTRACT

Maternal nutrient intake influences the health of the offspring via microenvironmental systems in digestion and absorption. Maternal high fructose diet (HFD) impairs hippocampus-dependent memory in adult female rat offspring. However, the underlying mechanisms remain largely unclear. Maternal HFD causes microbiota dysbiosis. In this study, we find that the plasma level of butyrate, a major metabolite of microbiota, is significantly decreased in the adult female maternal HFD offspring. In these rats, GPR43, a butyrate receptor was downregulated in the hippocampus. Moreover, the expressions of mitochondrial transcription factor A (TFAM), and peroxisome proliferator-activated receptor gamma coactivator 1α (PGC-1α) were downregulated in the hippocampus. The decreases of these functional proteins were reversed by fructooligosaccharides (FOS, a probiotic) treatment in adulthood. Astrocytes are critical for energy metabolism in the brain. Primary astrocyte culture from female maternal HFD offspring indicated that GPR43 and the mitochondrial biogenesis were significantly suppressed, which was reversed by supplemental butyrate incubation. The oxygen consumption rate (OCR) was reduced in the HFD group and rescued by butyrate. Intriguingly, the nuclear histone deacetylase 4 (HDAC4) was enhanced in the HFD group, suggesting an inhibitory role of butyrate on histone deacetylase activity. Inhibition of HDAC4 effectively restored the OCR, bioenergetics, and biogenesis of mitochondria. Together, these results suggested that the impaired butyrate signaling by maternal HFD could underlie the reduced mitochondrial functions in the hippocampus via HDAC4-mediated epigenetic changes.


Subject(s)
Astrocytes , Butyrates , Female , Animals , Rats , Butyrates/pharmacology , Energy Metabolism , Oxygen Consumption , Histone Deacetylases , Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha/genetics , Diet, High-Fat
11.
Molecules ; 29(2)2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38257342

ABSTRACT

Resveratrol (RSV), obtained from dietary sources, has been shown to reduce trimethylamine oxide (TMAO) levels in humans, and much research indicates that TMAO is recognized as a risk factor for cardiovascular disease. Therefore, this study investigated the effects of RSV and RSV-butyrate esters (RBE) on the proliferation of co-cultured bacteria and HepG2 cell lines, respectively, and also investigated the changes in trimethylamine (TMA) and TMOA content in the medium and flavin-containing monooxygenase-3 (FMO3) gene expression. This study revealed that 50 µg/mL of RBE could increase the population percentage of Bifidobacterium longum at a rate of 53%, while the rate was 48% for Clostridium asparagiforme. In contrast, co-cultivation of the two bacterial strains effectively reduced TMA levels from 561 ppm to 449 ppm. In addition, regarding TMA-induced HepG2 cell lines, treatment with 50 µM each of RBE, 3,4'-di-O-butanoylresveratrol (ED2), and 3-O-butanoylresveratrol (ED4) significantly reduced FMO3 gene expression from 2.13 to 0.40-1.40, which would also contribute to the reduction of TMAO content. This study demonstrated the potential of RBE, ED2, and ED4 for regulating TMA metabolism in microbial co-cultures and cell line cultures, which also suggests that the resveratrol derivative might be a daily dietary supplement that will be beneficial for health promotion in the future.


Subject(s)
Butyrates , Esters , Methylamines , Humans , Butyrates/pharmacology , Feasibility Studies , Resveratrol/pharmacology
12.
FEBS Open Bio ; 14(3): 358-379, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38151750

ABSTRACT

Overall diet, lifestyle choices, genetic predisposition, and other underlying health conditions may contribute to higher trimethylamine N-oxide (TMAO) levels and increased cardiovascular risk. This review explores the potential therapeutic ability of RSV to protect against cardiovascular diseases (CVD) and affect TMAO levels. This review considers recent studies on the association of TMAO with CVD. It also examines the sources, mechanisms, and metabolism of TMAO along with TMAO-induced cardiovascular events. Plant polyphenolic compounds, including resveratrol (RSV), and their cardioprotective mechanism of regulating TMAO levels and modifying gut microbiota are also discussed here. RSV's salient features and bioactive properties in reducing CVD have been evaluated. The close relationship between TMAO and CVD is clearly understood from currently available data, making it a potent biomarker for CVD. Precise investigation, including clinical trials, must be performed to understand RSV's mechanism, dose, effects, and derivatives as a cardioprotectant agent.


Subject(s)
Cardiovascular Diseases , Methylamines , Humans , Resveratrol/pharmacology , Cardiovascular Diseases/drug therapy , Risk Factors , Diet , Heart Disease Risk Factors
13.
Antioxidants (Basel) ; 12(12)2023 Nov 29.
Article in English | MEDLINE | ID: mdl-38136178

ABSTRACT

Taurine is a natural antioxidant with antihypertensive properties. Maternal chronic kidney disease (CKD) has an impact on renal programming and increases the risk of offspring hypertension in later life. The underlying mechanisms cover oxidative stress, a dysregulated hydrogen sulfide (H2S) system, dysbiotic gut microbiota, and inappropriate activation of the renin-angiotensin-aldosterone system (RAAS). We investigated whether perinatal taurine administration enables us to prevent high blood pressure (BP) in offspring complicated by maternal CKD. Before mating, CKD was induced through feeding chow containing 0.5% adenine for 3 weeks. Taurine was administered (3% in drinking water) during gestation and lactation. Four groups of male offspring were used (n = 8/group): controls, CKD, taurine-treated control rats, and taurine-treated rats with CKD. Taurine treatment significantly reduced BP in male offspring born to mothers with CKD. The beneficial effects of perinatal taurine treatment were attributed to an augmented H2S pathway, rebalance of aberrant RAAS activation, and gut microbiota alterations. In summary, our results not only deepen our knowledge of the mechanisms underlying maternal CKD-induced offspring hypertension but also afford us the impetus to consider taurine-based intervention as a promising preventive approach for future clinical translation.

14.
Biomedicines ; 11(12)2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38137539

ABSTRACT

Children suffering from chronic kidney disease (CKD) have a high risk of cardiovascular disease (CVD). The early detection and diagnosis of subclinical CVD in pediatric CKD can reduce mortality later in life. Plasma factor 4 (PF4) is a chemokine released by activated platelets. We examined whether or not PF4 in the plasma and urine, its kidney function normalized ratio, and fractional excretion have differential associations with CVD risk markers in 139 youths aged 3 to 18 years old with CKD stages G1-G4. Significant negative correlations were observed between plasma PF4 and cardiovascular surrogate markers, such as the left ventricular mass index (LVMI), carotid intima-media thickness (cIMT), and pulse wave velocity (PWV). The plasma PF4/creatinine (Cr) ratio was lower in CKD children with a high daytime BP and 24 h BP, high BP load, and nocturnal non-dipping status. After adjusting for confounders, the plasma PF4 and plasma PF4/Cr ratio still independently predicted an abnormal ABPM profile. In addition, both the plasma PF4 and plasma PF4/Cr ratio presented a negative correlation with the L-arginine and asymmetric dimethylarginine ratio. These findings provide convincing evidence supporting the link between PF4 and CVD markers in pediatric CKD. Our study highlights the importance of further research to assess the performance of PF4-related biomarkers in predicting CVD events and CKD progression in children with CKD.

15.
Nutrients ; 15(21)2023 Oct 31.
Article in English | MEDLINE | ID: mdl-37960279

ABSTRACT

Antrodia cinnamomea (AC), a medicinal mushroom, has multiple beneficial actions, such as acting as a prebiotic. The incidence of chronic kidney disease (CKD) in children has steadily increased year by year, and CKD is related to gut microbiota dysbiosis. Herein, we investigated the renoprotection of solid-state cultivated AC in adenine-induced CKD juvenile rats. CKD was induced in 3-week-old male rats by feeding with adenine (0.5%) for three weeks. Treated groups received oral administration of AC extracts at either a low (10 mg/kg/day) or high dose (100 mg/kg/day) for six weeks. At nine weeks of age, the rats were sacrificed. Renal outcomes, blood pressure, and gut microbiome composition were examined. Our results revealed that AC treatment, either low- or high-dose, improved kidney function, proteinuria, and hypertension in CKD rats. Low-dose AC treatment increased plasma concentrations of short-chain fatty acids (SCFAs). Additionally, we observed that AC acts like a prebiotic by enriching beneficial bacteria in the gut, such as Akkermansia and Turicibacter. Moreover, the beneficial action of AC against CKD-related hypertension might also be linked to the inhibition of the renin-angiotensin system. This study brings new insights into the potential application of AC as a prebiotic dietary supplement in the prevention and treatment of pediatric CKD.


Subject(s)
Hypertension , Renal Insufficiency, Chronic , Humans , Child , Rats , Male , Animals , Renal Insufficiency, Chronic/drug therapy , Renal Insufficiency, Chronic/prevention & control , Renal Insufficiency, Chronic/complications , Kidney , Hypertension/prevention & control , Prebiotics , Adenine/pharmacology
16.
Health Qual Life Outcomes ; 21(1): 117, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891615

ABSTRACT

OBJECTIVE: To characterize longitudinal changes and correlations between the measures of EQ-5D-Y and generic PedsQL and their associations with clinical changes in children and adolescents with mild-to-moderate chronic kidney disease (CKD). METHODS: Participants were recruited from January 2017 to September 2021 in a medical center in Taiwan. Both instruments were administered in their initial visits and every 6-month subsequent visits. Spearman's Rho (ρ) was used to assess correlations between the scores of EQ-5D-Y and PedsQL measures in longitudinal changes. Cohen's effect size (ES) was used to evaluate the changes of scores/subscales over time. In addition, factors associated with longitudinal changes in the score/subscales were explored. RESULTS: A total of 121 participants were enrolled, and 83 with ≥ 3 HRQOL measures during the 3.5 years follow-up were assessed their changes of HRQOL measures. The correlations (ρ > 0.3) appeared between the changes in the visual analog scale (VAS) of EQ-5D-Y and emotional and social subscales of PedsQL. ES was small (< 0.5) in the VAS and level-sum-score (LSS) of EQ-5D-Y scores for the clinical changes in comorbidities, while some PedsQL subscales were medium to high (0.5-0.8 or > 0.8). Hypertension, mineral bone disorder/anemia, and hyperuricemia associated with the changes in both HRQOL scores were varied by their various domains. CONCLUSION: Both EQ-5D-Y and PedsQL of HRQOL measures were responsive to worsened childhood CKD-related comorbidities during the follow-up; however, convergent validity between them was limited in some domains. The LSS of EQ-5D-Y showed greater changes than the VAS by comorbidity status; further comparison with utility weight is needed to determine the better performance of EQ-5D-Y.


Subject(s)
Quality of Life , Renal Insufficiency, Chronic , Adolescent , Humans , Child , Quality of Life/psychology , Surveys and Questionnaires , Reproducibility of Results , Comorbidity , Psychometrics
17.
Toxics ; 11(9)2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37755757

ABSTRACT

Celluloid, the predecessor to plastic, was synthesized in 1869, and due to technological advancements, plastic products appear to be ubiquitous in daily life. The massive production, rampant usage, and inadequate disposal of plastic products have led to severe environmental pollution. Consequently, reducing the employment of plastic has emerged as a pressing concern for governments globally. This review explores microplastics, including their origins, absorption, and harmful effects on the environment and humans. Several methods exist for breaking down plastics, including thermal, mechanical, light, catalytic, and biological processes. Despite these methods, microplastics (MPs, between 1 and 5 mm in size) continue to be produced during degradation. Acknowledging the significant threat that MPs pose to the environment and human health is imperative. This form of pollution is pervasive in the air and food and infiltrates our bodies through ingestion, inhalation, or skin contact. It is essential to assess the potential hazards that MPs can introduce. There is evidence suggesting that MPs may have negative impacts on different areas of human health. These include the respiratory, gastrointestinal, immune, nervous, and reproductive systems, the liver and organs, the skin, and even the placenta and placental barrier. It is encouraging to see that most of the countries have taken steps to regulate plastic particles. These measures aim to reduce plastic usage, which is essential today. At the same time, this review summarizes the degradation mechanism of plastics, their impact on human health, and plastic reduction policies worldwide. It provides valuable information for future research on MPs and regulatory development.

18.
J Clin Med ; 12(18)2023 Sep 11.
Article in English | MEDLINE | ID: mdl-37762835

ABSTRACT

Cardiovascular disease (CVD) is a significant cause of mortality and morbidity among children with chronic kidney disease (CKD). The causes of pediatric CKD differ from those in adults, as congenital anomalies in the kidney and urinary tract (CAKUT) are the leading causes in childhood. Identifying ideal markers of CVD risk early is crucial for CKD children to improve their care. Previously, we screened differentially expressed proteins in CKD children with or without blood pressure (BP) abnormalities and identified pregnancy zone protein (PZP). In 106 children and adolescents with CKD stages G1-G4, we analyzed plasma PZP concentration. The associations between PZP and ambulatory BP monitoring (ABPM) profile, parameters of cardiac and carotid ultrasounds, indices of arterial stiffness, and nitric oxide (NO) parameters were determined. We observed that PZP positively correlated with arterial stiffness indices, beta index, and pulse wave velocity in CAKUT. CKD children with abnormalities in ABPM and night dipping displayed a higher PZP concentration than those without. Additionally, the PZP level was positively correlated with NO bioavailability. In conclusion, our results suggest PZP has differential influences on cardiovascular risk in CAKUT and non-CAKUT children. Identification of this relationship is novel in the pediatric CKD literature.

19.
Antioxidants (Basel) ; 12(8)2023 Aug 17.
Article in English | MEDLINE | ID: mdl-37627624

ABSTRACT

Nitric oxide (NO) is a gaseous signaling molecule with renoprotective properties. NO can be produced in NO synthase (NOS)-dependent or -independent manners. NO deficiency plays a decisive role in chronic kidney disease (CKD). Kidney development can be affected in response to adverse intrauterine conditions that induce renal programming, thereby raising the risk of developing CKD in adulthood. Conversely, detrimental programming processes could be postponed or halted prior to the onset of CKD by early treatments, namely reprogramming. The current review provides an overview of the NOS/NO research performed in the context of renal programming and reprogramming. NO deficiency has been increasingly found to interact with the different mechanisms behind renal programming, such as oxidative stress, aberrant function of the renin-angiotensin system, disturbed nutrient-sensing mechanisms, dysregulated hydrogen sulfide signaling, and gut microbiota dysbiosis. The supplementation of NOS substrates, the inhibition of asymmetric dimethylarginine (ADMA), the administration of NO donors, and the enhancement of NOS during gestation and lactation have shown beneficial effects against renal programming in preclinical studies. Although human data on maternal NO deficiency and offspring kidney disease are scarce, experimental data indicate that targeting NO could be a promising reprogramming strategy in the setting of renal programming.

20.
Antioxidants (Basel) ; 12(7)2023 Jun 26.
Article in English | MEDLINE | ID: mdl-37507884

ABSTRACT

Hydrogen sulfide (H2S) and related reactive sulfur species are implicated in chronic kidney disease (CKD) and hypertension. Offspring born to CKD-afflicted mothers could develop hypertension coinciding with disrupted H2S and nitric oxide (NO) signaling pathways as well as gut microbiota. Thiosulfate, a precursor of H2S and an antioxidant, has shown anti-hypertensive effects. This study aimed to investigate the protective effects of sodium thiosulfate (STS) in a rat model of maternal CKD-induced hypertension. Before mating, CKD was induced through feeding 0.5% adenine chow for 3 weeks. Mother rats were given a vehicle or STS at a dosage of 2 g/kg/day in drinking water throughout gestation and lactation. Perinatal STS treatment protected 12-week-old offspring from maternal CKD-primed hypertension. The beneficial effects of STS could partially be explained by the enhancement of both H2S and NO signaling pathways and alterations in gut microbiota. Not only increasing beneficial microbes but maternal STS treatment also mediates several hypertension-associated intestinal bacteria. In conclusion, perinatal treatment with STS improves maternal CKD-primed offspring hypertension, suggesting that early-life RSS-targeting interventions have potential preventive and therapeutic benefits, awaiting future translational research.

SELECTION OF CITATIONS
SEARCH DETAIL
...